Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 616: 43-8, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26320023

RESUMO

Neurotrophic factors and peripheral nerves are known to be good substrates for bridging CNS trauma. The involvement of fibroblast growth factor-2 (FGF-2) activation in the dorsal root ganglion (DRG) was examined following spinal cord injury in the rat. We evaluated whether FGF-2 increases the ability of a sciatic nerve graft to enhance neuronal plasticity, in a gap promoted by complete transection of the spinal cord. The rats were subjected to a 4mm-long gap at low thoracic level and were repaired with saline (Saline or control group, n=10), or fragment of the sciatic nerve (Nerve group, n=10), or fragment of the sciatic nerve to which FGF-2 (Nerve+FGF-2 group, n=10) had been added immediately after lesion. The effects of the FGF-2 and fragment of the sciatic nerve grafts on neuronal plasticity were investigated using choline acetyl transferase (ChAT)-immunoreactivity of neurons in the dorsal root ganglion after 8 weeks. Preservation of the area and diameter of neuronal cell bodies in dorsal root ganglion (DRG) was seen in animals treated with the sciatic nerve, an effect enhanced by the addition of FGF-2. Thus, the addition of exogenous FGF-2 to a sciatic nerve fragment grafted in a gap of the rat spinal cord submitted to complete transection was able to improve neuroprotection in the DRG. The results emphasized that the manipulation of the microenvironment in the wound might amplify the regenerative capacity of peripheral neurons.


Assuntos
Colina O-Acetiltransferase/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Gânglios Espinais/metabolismo , Neurônios/enzimologia , Nervo Isquiático/transplante , Traumatismos da Medula Espinal/metabolismo , Animais , Corpo Celular/patologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Plasticidade Neuronal , Neurônios/patologia , Ratos Wistar , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia
2.
Physiol Behav ; 152(Pt A): 272-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26471840

RESUMO

Studies from the last two decades have pointed to multiple mechanisms of fear. For responding to predators, there is a group of highly interconnected hypothalamic nuclei formed by the anterior hypothalamic nucleus, the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus­the predator-responsive hypothalamic circuit. This circuit expresses Fos in response to predator presence or its odor. Lesion of any component of this system blocks or reduces the expression of fear and consequently defensive behavior when faced with a predator or its cue. However, most of the knowledge about that circuit has been obtained using the rat as a model of prey and the cat as a source of predator cues. In the present study, we exposed mice to strong cat or snake odors, two known mice predators, and then we used the rat exposure test (RET) to study their behavior when confronted with the same predator's odor. Our data point to a differential response of mice exposed to these odors. When Swiss mice were exposed to the cat odor, they show defensive behavior and the predator-responsive hypothalamic circuit expressed Fos. The opposite was seen when they faced snake's odor. The acute odor exposure was not sufficient to activate the mouse predator-responsive hypothalamic circuit and the mice acted like they were not in a stressful situation, showing almost no sign of fear or defensive posture. This leads us to the conclusion that not all the predator cues are sufficient to activate the predator-responsive hypothalamic circuit of mice and that their response depends on the danger that these predators represent in the natural history of the prey.


Assuntos
Encéfalo/fisiologia , Odorantes , Percepção Olfatória/fisiologia , Comportamento Predatório , Animais , Boidae , Gatos , Imuno-Histoquímica , Masculino , Camundongos , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória
3.
Neurosci Res ; 89: 75-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242576

RESUMO

The Zona Incerta is a key neural substrate of higher brain functions. A neural population in the caudal ZI projects into the superior colliculus. This recently has been identified as an important structure for the saccades. Applying CTb, we describe a retinal projection into the caudal ZI and the distribution of its terminal varicosities in the rock cavy, a Brazilian rodent, which has been used as an anatomical model to enhance the comprehension about the phylogeny of the nervous system. Contrary to other investigated rodents, the retinal fibers in the rock cavy lie in the caudal Zona Incerta (ZIc), suggesting a functional specialization in the rock cavy. The high resolution and qualitative analysis of retinal fibers in the present work provide a substrate to interpretation of the visual system, and its phylogenetic pathways among species.


Assuntos
Células Ganglionares da Retina/ultraestrutura , Roedores/anatomia & histologia , Vias Visuais/citologia , Zona Incerta/citologia , Animais , Axônios/ultraestrutura , Toxina da Cólera , Masculino , Terminações Pré-Sinápticas/ultraestrutura , Retina/citologia , Especificidade da Espécie , Coloração e Rotulagem
4.
Brain Res ; 1586: 99-108, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25152460

RESUMO

The thalamic midline/intralaminar complex is part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The midline thalamic nuclei connect with the medial prefrontal cortex and the medial temporal lobe. On the other hand, the intralaminar nuclei connect with the fronto-parietal cortex. Taking into account this connectivity pattern, it is not surprising that the midline/intralaminar complex has been implicated in a broad variety of cognitive functions, including memory process, attention and orientation, and also reward-based behavior. Serotonin (5-HT) is a neurotransmitter that exerts different post-synaptic roles. Serotonergic neurons are almost entirely restricted to the raphe nuclei and the 5-HT fibers are distributed widely throughout the brain, including the midline/intralaminar complex. The present study comprises a detailed description of the morphologic features and semiquantitative analysis of 5-HT fibers distribution in the midline/intralaminar complex in the rock cavy, a typical rodent of the Northeast region of Brazil, which has been used by our group as an anatomical model to expand the comprehension about phylogeny on the nervous system. The 5-HT fibers in the midline/intralaminar nuclei of the rock cavy were classified into three distinct categories: (1) beaded fibers, which are relatively fine and endowed with large varicosities; (2) fine fibers, with thin axons and small varicosities uniformly distributed in whole axon; and (3) stem axons, showing thick non-varicose axons. Moreover, the density of 5-HT fibers is variable among the analyzed nuclei. On the basis of this diversity of the morphological fibers and the differential profile of optical density among the midline/intralaminar nuclei of the rock cavy, we conclude that the serotonergic system uses a diverse morphologic apparatus to exert a large functional repertory in the midline/intralaminar thalamic nuclei.


Assuntos
Núcleos Intralaminares do Tálamo/anatomia & histologia , Núcleos da Linha Média do Tálamo/anatomia & histologia , Fibras Nervosas/metabolismo , Serotonina/metabolismo , Análise de Variância , Animais , Cobaias
5.
Restor Neurol Neurosci ; 30(3): 265-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22555431

RESUMO

PURPOSE: Failure of severed adult central nervous system (CNS) axons to regenerate could be attributed with a reduced intrinsic growing capacity. Severe spinal cord injury is frequently associated with a permanent loss of function because the surviving neurons are impaired to regrow their fibers and to reestablish functional contacts. Peripheral nerves are known as good substrate for bridging CNS trauma with neurotrophic factor addition. We evaluated whether fibroblastic growth factor 2 (FGF-2) placed in a gap promoted by complete transection of the spinal cord may increase the ability of sciatic nerve graft to enhance motor recovery and fibers regrow. METHODS: We used a complete spinal cord transection model. Rats received a 4 mm-long gap at low thoracic level and were repaired with saline (control) or fragment of the sciatic nerve (Nerve) or FGF-2 was added to nerve fragment (Nerve+FGF-2) to the grafts immediately after complete transection. The hind limbs performance was evaluated weekly for 8 weeks by using motor behavior score (BBB) and sensorimotor tests-linked to the combined behavior score (CBS), which indicate the degree of the motor improvement and the percentage of functional deficit, respectively. Neuronal plasticity were evaluated at the epicenter of the injury using MAP-2 and GAP-43 expression. RESULTS: Spinal cord treatment with sciatic nerve and sciatic nerve plus FGF-2 allowed recovery of hind limb movements compared to control, manifested by significantly higher behavioral scores. Higher amounts of MAP-2 and GAP-43 immunoreactive fibers were found in the epicenter of the graft when FGF-2 was added. CONCLUSIONS: FGF-2 added to the nerve graft favored the motor recovery and fiber regrowth. Thus, these results encourage us to explore autologous transplantation as a novel and promising cell therapy for treatment of spinal cord lesion.


Assuntos
Fator 2 de Crescimento de Fibroblastos/fisiologia , Regeneração Nervosa/fisiologia , Nervo Isquiático/transplante , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/cirurgia , Transplante de Tecidos/métodos , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Masculino , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
6.
Brain Res ; 1425: 47-61, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22030409

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) is widely distributed in the brain of many species. In the hypothalamus, CART neurotransmission has been implicated in diverse functions including energy balance, stress response, and temperature and endocrine regulation. Although some studies have been performed in primates, very little is known about the distribution of CART neurons in New World monkeys. New World monkeys are good models for systems neuroscience, as some species have evolved several behavioral and anatomical characteristics shared with humans, including diurnal and social habits, intense maternal care, complex manipulative abilities and well-developed frontal cortices. In the present study, we assessed the distribution of CART mRNA and peptide in the hypothalamus of the capuchin monkey (Cebus apella) and the common marmoset (Callithrix jacchus). We found that the distribution of hypothalamic CART neurons in these monkeys is similar to what has been described for rodents and humans, but some relevant differences were noticed. Only in capuchin monkeys CART neurons were observed in the suprachiasmatic and the intercalatus nuclei, whereas only in marmoset CART neurons were observed in the dorsal anterior nucleus. We also found that the only in marmoset displayed CART neurons in the periventricular preoptic nucleus and in an area seemingly comprising the premammillary nucleus. These hypothalamic sites are both well defined in rodents but poorly defined in humans. Our findings indicate that CART expression in hypothalamic neurons is conserved across species but the identified differences suggest that CART is also involved in the control of species-specific related functions.


Assuntos
Callithrix/metabolismo , Cebus/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Hipotálamo/química , Masculino , Proteínas do Tecido Nervoso/biossíntese , Especificidade da Espécie
7.
Neurosci Lett ; 475(1): 38-43, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20338219

RESUMO

The MD has reciprocal connections with the ventromedial prefrontal cortex (PFC) and with limbic cortices and appears to participate in learning and memory-related processes. In this study, we report the identification of a hitherto not reported direct retinal projection to the MD of the rock cavy, a typical rodent species of the Northeast region of Brazil. After unilateral intravitreal injections of cholera toxin subunit B (CTb), anterogradely transported CTb-imunoreactive fibers and presumptive terminals were seen in the MD. A few labeled retinal fibers/terminals detected in the MD of the rock cavy brain show clear varicosities, suggesting terminal fields. The present work is the first to show a direct retinal projection to the MD of rodents and may contribute for elucidating the anatomical substrate of the functional involvement of this thalamic nucleus in the modulation of the visual recognition, emotional learning and object-reward association memory.


Assuntos
Núcleo Mediodorsal do Tálamo/fisiologia , Retina/fisiologia , Vias Visuais , Animais , Masculino , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...